Improving GOES-R Cloud and Precipitation Products Associated with DCSs using NEXRAD Radar Network over Continental USA

PI: Xiquan Dong (NEXRAD&GOES → Classification), Uni. of North Dakota Co-PI: Zhanqing Li (MODIS → Cloud Properties), University of Maryland Collaborator: Bob Kuligowski (SCaMPR → Precipitation), NOAA NESDIS

Classify Rainfall from DCS Components

What are the % of rainfall from rain core and anvils in SCaMPR and Q2?

Rainfall Comparison

Rainfall in anvil: SCaMPR (29%) vs. Q2 (2%)

Rainfall in rain core: SCaMPR (70%) vs. Q2 (97%)

Overall: SCaMPR overestimated precipitation compared to Q2, in particular over Anvil region.

How to Improve SCaMPR Precipitation?

- Daytime optical depth shows significant difference between both types of anvil clouds and rain core
- Optical depths in anvil region may be used to improve the SCaMPR precipitation retrieval (filter out non raining areas)

Step 1:

Improving SCaMPR method by distinguishing anvil clouds from rain cores using more available channels (MODIS proxy data), Radar, and Aircraft data during MC³E experiment over ARM SGP (15 convective+anvil cases during Apr-June 2011)

Step 2:

Extending the modified SCaMPR method to continental USA and comparing with NEXRAD Q2 precipitation product. (For more details, See Zhe Feng's poster)